ﻻ يوجد ملخص باللغة العربية
Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present an approach for reduced model construction, that preserves the symplectic symmetry of dissipative Hamiltonian systems. The method constructs a closed reduced Hamiltonian system by coupling the full model with a canonical heat bath. This allows the reduced system to be integrated with a symplectic integrator, resulting in a correct dissipation of energy, preservation of the total energy and, ultimately, in the stability of the solution. Accuracy and stability of the method are illustrated through the numerical simulation of the dissipative wave equation and a port-Hamiltonian model of an electric circuit.
While reduced-order models (ROMs) have been popular for efficiently solving large systems of differential equations, the stability of reduced models over long-time integration is of present challenges. We present a greedy approach for ROM generation
Suppressing vibrations in mechanical models, usually described by second-order dynamical systems, is a challenging task in mechanical engineering in terms of computational resources even nowadays. One remedy is structure-preserving model order reduct
In this paper, we present an interpolation framework for structure-preserving model order reduction of parametric bilinear dynamical systems. We introduce a general setting, covering a broad variety of different structures for parametric bilinear sys
This paper contributes with a new formal method of spatial discretization of a class of nonlinear distributed parameter systems that allow a port-Hamiltonian representation over a one dimensional manifold. A specific finite dimensional port-Hamiltoni
The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a ti