ﻻ يوجد ملخص باللغة العربية
We introduce the concept of neutron-proton two-particle units ($np$-Weisskopf units) to be used in the analysis of the ($^3$He,$p)$ and $(p,^3$He) added{reactions on nuclei} along the N=Z line. These are presented for the conditions relevant to the $(n,j,ell$) orbits expected from $^{16}$O to $^{100}$Sn. As is the case of the Weisskopf units for electromagnetic transitions, the $np$-WUs will provide a simple, yet robust, measure of isoscalar and isovector $np$ pairing collective effects.
The structure of $^{26}$O is currently being investigated on both theoretical and experimental fronts. It is well established that it is unbound and the resonance parameters are fairly well-known. The theoretical analysis may involved two- and three-
Background: Spin-triplet ($S=1$) proton-neutron (pn) pairing in nuclei has been under debate. It is well known that the dynamical pairing affects the nuclear matrix element of the Gamow-Teller (GT) transition and the double beta decay. Purpose: We in
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the
Model-independent constraints for the neutron-triton and proton-Helium-3 scattering lengths are calculated with a leading-order interaction derived from an effective field theory without explicit pions. Using the singlet neutron-proton scattering len
The isoscalar proton-neutron pairing and isovector pairing, including both isovector proton-neutron pairing and like-particle pairing, are treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed f