ترغب بنشر مسار تعليمي؟ اضغط هنا

LinCDE: Conditional Density Estimation via Lindseys Method

131   0   0.0 ( 0 )
 نشر من قبل Zijun Gao
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Conditional density estimation is a fundamental problem in statistics, with scientific and practical applications in biology, economics, finance and environmental studies, to name a few. In this paper, we propose a conditional density estimator based on gradient boosting and Lindseys method (LinCDE). LinCDE admits flexible modeling of the density family and can capture distributional characteristics like modality and shape. In particular, when suitably parametrized, LinCDE will produce smooth and non-negative density estimates. Furthermore, like boosted regression trees, LinCDE does automatic feature selection. We demonstrate LinCDEs efficacy through extensive simulations and several real data examples.



قيم البحث

اقرأ أيضاً

Compared to the conditional mean as a simple point estimator, the conditional density function is more informative to describe the distributions with multi-modality, asymmetry or heteroskedasticity. In this paper, we propose a novel parametric condit ional density estimation method by showing the connection between the general density and the likelihood function of inhomogeneous Poisson process models. The maximum likelihood estimates can be obtained via weighted logistic regressions, and the computation can be significantly relaxed by combining a block-wise alternating maximization scheme and local case-control sampling. We also provide simulation studies for illustration.
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam ental and widely applicable, nonparametric conditional density estimators have received relatively little attention from statisticians and little or none from the machine learning community. None of that work has been applied to greater than bivariate data, presumably due to the computational difficulty of data-driven bandwidth selection. We describe the double kernel conditional density estimator and derive fast dual-tree-based algorithms for bandwidth selection using a maximum likelihood criterion. These techniques give speedups of up to 3.8 million in our experiments, and enable the first applications to previously intractable large multivariate datasets, including a redshift prediction problem from the Sloan Digital Sky Survey.
Conditional density estimation (density regression) estimates the distribution of a response variable y conditional on covariates x. Utilizing a partition model framework, a conditional density estimation method is proposed using logistic Gaussian pr ocesses. The partition is created using a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The Markov chain Monte Carlo algorithm is made possible through a Laplace approximation on the latent variables of the logistic Gaussian process model. This approximation marginalizes the parameters in each partition element, allowing an efficient search of the posterior distribution of the tessellation. The method has desirable consistency properties. In simulation and applications, the model successfully estimates the partition structure and conditional distribution of y.
Modelling statistical relationships beyond the conditional mean is crucial in many settings. Conditional density estimation (CDE) aims to learn the full conditional probability density from data. Though highly expressive, neural network based CDE mod els can suffer from severe over-fitting when trained with the maximum likelihood objective. Due to the inherent structure of such models, classical regularization approaches in the parameter space are rendered ineffective. To address this issue, we develop a model-agnostic noise regularization method for CDE that adds random perturbations to the data during training. We demonstrate that the proposed approach corresponds to a smoothness regularization and prove its asymptotic consistency. In our experiments, noise regularization significantly and consistently outperforms other regularization methods across seven data sets and three CDE models. The effectiveness of noise regularization makes neural network based CDE the preferable method over previous non- and semi-parametric approaches, even when training data is scarce.
158 - Karine Bertin 2013
In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. W e define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic H{o}lder balls. Furthermore, our results allow us to measure precisely the influence of $mathrm{f}_X(x)$ on rates of convergence, where $mathrm{f}_X$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا