ﻻ يوجد ملخص باللغة العربية
Conditional density estimation (density regression) estimates the distribution of a response variable y conditional on covariates x. Utilizing a partition model framework, a conditional density estimation method is proposed using logistic Gaussian processes. The partition is created using a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The Markov chain Monte Carlo algorithm is made possible through a Laplace approximation on the latent variables of the logistic Gaussian process model. This approximation marginalizes the parameters in each partition element, allowing an efficient search of the posterior distribution of the tessellation. The method has desirable consistency properties. In simulation and applications, the model successfully estimates the partition structure and conditional distribution of y.
Compared to the conditional mean as a simple point estimator, the conditional density function is more informative to describe the distributions with multi-modality, asymmetry or heteroskedasticity. In this paper, we propose a novel parametric condit
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam
Conditional density estimation is a fundamental problem in statistics, with scientific and practical applications in biology, economics, finance and environmental studies, to name a few. In this paper, we propose a conditional density estimator based
Model uncertainty quantification is an essential component of effective data assimilation. Model errors associated with sub-grid scale processes are often represented through stochastic parameterizations of the unresolved process. Many existing Stoch
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covari