ﻻ يوجد ملخص باللغة العربية
Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurational self-consistent field (SA-MCSCF) method. However, the exponential computational cost of classical computers with the increasing number of molecular orbitals hinders applications of SA-MCSCF for large systems we are interested in. Utilizing quantum computers was recently proposed as a promising approach to overcome such computational cost, dubbed as SA orbital-optimized variational quantum eigensolver (SA-OO-VQE). Here we extend a theory of SA-OO-VQE so that analytical gradients of energy can be evaluated by standard techniques that are feasible with near-term quantum computers. The analytical gradients, known only for the state-specific OO-VQE in previous studies, allow us to determine various characteristics of photochemical reactions such as the minimal energy (ME) points and the conical intersection (CI) points. We perform a proof-of-principle calculation of our methods by applying it to the photochemical {it cis-trans} isomerization of 1,3,3,3-tetrafluoropropene. Numerical simulations of quantum circuits and measurements can correctly capture the photochemical reaction pathway of this model system, including the ME and CI points. Our results illustrate the possibility of leveraging quantum computers for studying photochemical reactions.
An adaptive variational quantum imaginary time evolution (AVQITE) approach is introduced that yields efficient representations of ground states for interacting Hamiltonians on near-term quantum computers. It is based on McLachlans variational princip
We present a generalization of the variational principle that is compatible with any Hamiltonian eigenstate that can be specified uniquely by a list of properties. This variational principle appears to be compatible with a wide range of electronic st
Variational quantum eigensolver (VQE) optimizes parameterized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage up
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at,
By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational principle. In practice, the prepared quantum state is indirectly assesse