ﻻ يوجد ملخص باللغة العربية
By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational principle. In practice, the prepared quantum state is indirectly assessed by the value of the associated energy. Novel adaptive derivative-assembled pseudo-trotter (ADAPT) ansatz approaches and recent formal advances now establish a clear connection between the theory of quantum chemistry and the quantum state ansatz used to solve the electronic structure problem. Here we benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves for a few selected diatomic molecules, namely H$_2$, NaH, and KH. Using numerical simulation, we find both methods provide good estimates of the energy and ground state, but only ADAPT-VQE proves to be robust to particularities in optimization methods. Another relevant finding is that gradient-based optimization is overall more economical and delivers superior performance than analogous simulations carried out with gradient-free optimizers. The results also identify small errors in the prepared state fidelity which show an increasing trend with molecular size.
Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of scientific interest. While general quantum simulation algorithms likely require error-corrected qubits, there may be applications of scientific intere
Variational quantum eigensolver (VQE) optimizes parameterized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage up
Variational quantum eigensolver(VQE) typically minimizes energy with hybrid quantum-classical optimization, which aims to find the ground state. Here, we propose a VQE by minimizing energy variance, which is called as variance-VQE(VVQE). The VVQE can
Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for th
Quantum-enhanced computing methods are promising candidates to solve currently intractable problems. We consider here a variational quantum eigensolver (VQE), that delegates costly state preparations and measurements to quantum hardware, while classi