ﻻ يوجد ملخص باللغة العربية
Ride-pooling has become an important service option offered by ride-hailing platforms as it serves multiple trip requests in a single ride. By leveraging customer data, connected vehicles, and efficient assignment algorithms, ride-pooling can be a critical instrument to address driver shortages and mitigate the negative externalities of ride-hailing operations. Recent literature has focused on computationally intensive optimization-based methods that maximize system throughput or minimize vehicle miles. However, individual customers may experience substantial service quality degradation due to the consequent waiting and detour time. In contrast, this paper examines heuristic methods for real-time ride-pooling assignments that are highly scalable and easily computable. We propose a restricted subgraph method and compare it with other existing heuristic and optimization-based matching algorithms using a variety of metrics. By fusing multiple sources of trip and network data in New York City, we develop a flexible, agent-based simulation platform to test these strategies on different demand levels and examine how they affect both the customer experience and the ride-hailing platform. Our results find a trade-off among heuristics between throughput and customer matching time. We show that our proposed ride-pooling strategy maintains system performance while limiting trip delays and improving customer experience. This work provides insight for policymakers and ride-hailing operators about the performance of simpler heuristics and raises concerns about prioritizing only specific platform metrics without considering service quality.
New forms of on-demand transportation such as ride-hailing and connected autonomous vehicles are proliferating, yet are a challenging use case for electric vehicles (EV). This paper explores the feasibility of using deep reinforcement learning (DRL)
On-demand ride-pooling (e.g., UberPool) has recently become popular because of its ability to lower costs for passengers while simultaneously increasing revenue for drivers and aggregation companies. Unlike in Taxi on Demand (ToD) services -- where a
Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but al
The advent of shared-economy and smartphones made on-demand transportation services possible, which created additional opportunities, but also more complexity to urban mobility. Companies that offer these services are called Transportation Network Co
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of