ترغب بنشر مسار تعليمي؟ اضغط هنا

Betti numbers of Brill-Noether varieties on a general curve

126   0   0.0 ( 0 )
 نشر من قبل Camilla Felisetti
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the integral cohomology groups of the smooth Brill-Noether varieties $G^r_d(C)$, parametrizing linear series of degree $d$ and dimension exactly $r$ on a general curve $C$. As an application, we determine the whole intersection cohomology of the singular Brill-Noether loci $W^r_d(C)$, parametrizing complete linear series on $C$ of degree $d$ and dimension at least $r$.



قيم البحث

اقرأ أيضاً

90 - Luigi Pagano 2018
We slightly extend a previous result concerning the injectivity of a map of moduli spaces and we use this result to construct curves whose Brill-Noether loci have unexpected dimension.
In this paper we consider the Brill-Noether locus $W_{underline d}(C)$ of line bundles of multidegree $underline d$ of total degree $g-1$ having a nonzero section on a nodal reducible curve $C$ of genus $ggeq2$. We give an explicit description of the irreducible components of $W_{underline d}(C)$ for a semistable multidegre $underline d$. As a consequence we show that, if two semistable multidegrees of total degre $g-1$ on a curve with no rational components differ by a twister, then the respective Brill-Noether loci have isomorphic components.
107 - Martha Precup 2016
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha t the Betti numbers of regular Hessenberg varieties for $GL_n(mathbb{C})$ are palindromic. In this paper, we extend this result to all reductive algebraic groups, proving that the Betti numbers of regular Hessenberg varieties are palindromic.
144 - Eric Larson , Hannah Larson , 2020
Let $C$ be a curve of genus $g$. A fundamental problem in the theory of algebraic curves is to understand maps $C to mathbb{P}^r$ of specified degree $d$. When $C$ is general, the moduli space of such maps is well-understood by the main theorems of B rill--Noether theory. Despite much study over the past three decades, a similarly complete picture has proved elusive for curves of fixed gonality. Here we complete such a picture, by proving analogs of all of the main theorems of Brill--Noether theory in this setting. As a corollary, we prove a conjecture of Eisenbud and Schreyer regarding versal deformation spaces of vector bundles on $mathbb{P}^1$.
We present an algorithm for explicitly computing the number of generators of the stable cohomology algebra of any rationally smooth partial toroidal compactification of ${mathcal A}_g$, satisfying certain additivity and finiteness properties, in term s of the combinatorics of the corresponding toric fans. In particular the algorithm determines the stable cohomology of the matroidal partial compactification, in terms of simple regular matroids that are irreducible with respect to the 1-sum operation, and their automorphism groups. The algorithm also applies to compute the stable Betti numbers in close to top degree for the perfect cone toroidal compactification. This suggests the existence of an algebra structure on the stable cohomology of the perfect cone compactification in close to top degree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا