ﻻ يوجد ملخص باللغة العربية
In this paper we consider the Brill-Noether locus $W_{underline d}(C)$ of line bundles of multidegree $underline d$ of total degree $g-1$ having a nonzero section on a nodal reducible curve $C$ of genus $ggeq2$. We give an explicit description of the irreducible components of $W_{underline d}(C)$ for a semistable multidegre $underline d$. As a consequence we show that, if two semistable multidegrees of total degre $g-1$ on a curve with no rational components differ by a twister, then the respective Brill-Noether loci have isomorphic components.
We compute the integral cohomology groups of the smooth Brill-Noether varieties $G^r_d(C)$, parametrizing linear series of degree $d$ and dimension exactly $r$ on a general curve $C$. As an application, we determine the whole intersection cohomology
We slightly extend a previous result concerning the injectivity of a map of moduli spaces and we use this result to construct curves whose Brill-Noether loci have unexpected dimension.
Let $C$ be a curve of genus $g$. A fundamental problem in the theory of algebraic curves is to understand maps $C to mathbb{P}^r$ of specified degree $d$. When $C$ is general, the moduli space of such maps is well-understood by the main theorems of B
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypers
Let $K$ be an algebraically closed field of characteristic different from $2$, $g$ a positive integer, $f(x)in K[x]$ a degree $2g+1$ monic polynomial without repeated roots, $C_f: y^2=f(x)$ the corresponding genus g hyperelliptic curve over $K$, and