ﻻ يوجد ملخص باللغة العربية
We report three AstroSat observations of BL Lacertae object OJ 287. The three observations caught it in very different flux states that are connected to different broadband spectral states. These observations trace the source spectral evolution from the end-phase of activity driven by a new, additional HBL like emission component in 2017 to its complete disappearance in 2018 and re-emergence in 2020. The 2017 observation shows a comparatively flatter optical-UV and X-ray spectrum. Supplementing it with the simultaneous NuSTAR monitoring indicates a hardening at the high-energy-end. The 2018 observation shows a harder X-ray spectrum and a sharp decline or cutoff in the optical-UV spectrum, revealed thanks to the Far-UV data from AstroSat. The brightest of all, the 2020 observation shows a hardened optical-UV spectrum and an extremely soft X-ray spectrum, constraining the low-energy peak of spectral energy distribution at UV energies -- a characteristic of HBL blazars. The contemporaneous MeV-GeV spectra from LAT show the well-known OJ 287 spectrum during 2018 but a flatter spectrum during 2017 and a hardening above ~1 GeV during 2020. Modeling broadband SEDs show that 2018 emission can be reproduced with a one-zone leptonic model while 2017 and 2020 observations need a two-zone model, with the additional zone emitting an HBL radiation.
We report the re-emergence of a new broadband emission through a detailed and systematic study of the multi-wavelength spectral and temporal behavior of OJ 287 after its first-ever reported VHE activity in 2017 to date, which includes the second-high
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily $gamma$-ray fluxes from emph{Fermi}-LAT are consistent with no variability. The
We present a multi-wavelength (MW) spectral and temporal study of the recent activity of the claimed super-massive binary black hole system OJ 287 since December 2015. The overall MW activity can be divided into two durations: December 2015 - April 2
We present recent optical photometric observations of the blazar OJ 287 taken during September 2015 -- May 2016. Our intense observations of the blazar started in November 2015 and continued until May 2016 and included detection of the large optical