ﻻ يوجد ملخص باللغة العربية
We report the re-emergence of a new broadband emission through a detailed and systematic study of the multi-wavelength spectral and temporal behavior of OJ 287 after its first-ever reported VHE activity in 2017 to date, which includes the second-highest X-ray flux of the source. The source shows high optical to X-ray flux variations, accompanied mainly by strong spectral changes. The optical to X-ray flux variations are correlated and simultaneous except for two durations when they are anti-correlated. The flux variations, however, are anti-correlated with the X-ray spectral state while correlated with optical-UV (ultraviolet). Weekly binned {it Fermi}-LAT data around the duration of the highest X-ray activity show a few detections with a log-parabola model but none with a power-law; yet the extracted LAT spectral energy distribution (SED) of the high activity duration for both the models is similar and show a hardening above 1 GeV. Further, near-infrared (NIR) data indicate strong spectral change, resembling a thermal component. Overall, the combined optical to gamma-ray broadband spectrum establishes the observed variations to a new high-energy-peaked (HBL) broadband emission component, similar to the one seen during the highest reported X-ray flux state of the source in 2017. The observed activities indicate some peculiar features that seem to be characteristic of this emission component while its appearance, a few years around the claimed (sim 12)-year optical outbursts strongly indicate a connection between the two.
We report three AstroSat observations of BL Lacertae object OJ 287. The three observations caught it in very different flux states that are connected to different broadband spectral states. These observations trace the source spectral evolution from
We present a comprehensive analysis of all XMM-Newton spectra of OJ 287 spanning 15 years of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287 which started in 2015,
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily $gamma$-ray fluxes from emph{Fermi}-LAT are consistent with no variability. The
We present a multi-wavelength spectral and temporal analysis of the blazar OJ 287 during its recent activity between December 2015 -- May 2016, showing strong variability in the near-infrared (NIR) to X-ray energies with detection at $gamma$-ray ener