ﻻ يوجد ملخص باللغة العربية
The Hankel matrix of type B Narayana polynomials was proved to be totally positive by Wang and Zhu, and independently by Sokal. Pan and Zeng raised the problem of giving a planar network proof of this result. In this paper, we present such a proof by constructing a planar network allowing negative weights, applying the Lindstrom-Gessel-Viennot lemma and establishing an involution on the set of nonintersecting families of directed paths.
The object of this paper is to give a systematic treatment of excedance-type polynomials. We first give a sufficient condition for a sequence of polynomials to have alternatingly increasing property, and then we present a systematic study of the join
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillovs unimodality c
In this paper, we prove the real-rootedness of two classes of generalized Narayana polynomials: one arising as the $h$-polynomials of the generalized associahedron associated to the finite Weyl groups, the other arising in the study of the infinite l
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three diffe
The generalized Narayana polynomials $N_{n,m}(x)$ arose from the study of infinite log-concavity of the Boros-Moll polynomials. The real-rootedness of $N_{n,m}(x)$ had been proved by Chen, Yang and Zhang. They also showed that when $ngeq m+2$, each o