ﻻ يوجد ملخص باللغة العربية
The generalized Narayana polynomials $N_{n,m}(x)$ arose from the study of infinite log-concavity of the Boros-Moll polynomials. The real-rootedness of $N_{n,m}(x)$ had been proved by Chen, Yang and Zhang. They also showed that when $ngeq m+2$, each of the generalized Narayana polynomials has one and only one positive zero and $m$ negative zeros, where the negative zeros of $N_{n,m}(x)$ and $N_{n+1,m+1}(x)$ have interlacing relations. In this paper, we study the properties of the positive zeros of $N_{n,m}(x)$ for $ngeq m+2$. We first obtain a new recurrence relation for the generalized Narayana polynomials. Based on this recurrence relation, we prove upper and lower bounds for the positive zeros of $N_{n,m}(x)$. Moreover, the monotonicity of the positive zeros of $N_{n,m}(x)$ are also proved by using the new recurrence relation.
In this paper, we prove the real-rootedness of two classes of generalized Narayana polynomials: one arising as the $h$-polynomials of the generalized associahedron associated to the finite Weyl groups, the other arising in the study of the infinite l
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillovs unimodality c
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three diffe
J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcc_t-colorings, and rainbow co
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.