ترغب بنشر مسار تعليمي؟ اضغط هنا

The Traveling Firefighter Problem

54   0   0.0 ( 0 )
 نشر من قبل Majid Farhadi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the $L_p$ Traveling Salesman Problem ($L_p$-TSP), given by an origin, a set of destinations, and underlying distances. The objective is to schedule a destination visit sequence for a traveler of unit speed to minimize the Minkowski $p$-norm of the resulting vector of visit/service times. For $p = infty$ the problem becomes a path variant of the TSP, and for $p = 1$ it defines the Traveling Repairman Problem (TRP), both at the center of classical combinatorial optimization. We provide an approximation preserving polynomial-time reduction of $L_p$-TSP to the segmented-TSP Problem [Sitters 14] and further study the case of $p = 2$, which we term the Traveling Firefighter Problem (TFP), when the cost due to a delay in service is quadratic in time. We also study the all-norm-TSP problem [Golovin et al. 08], in which the objective is to find a route that is (approximately) optimal with respect to the minimization of any norm of the visit times, and improve corresponding (in)approximability bounds on metric spaces.



قيم البحث

اقرأ أيضاً

The dynamics of infectious diseases spread is crucial in determining their risk and offering ways to contain them. We study sequential vaccination of individuals in networks. In the original (deterministic) version of the Firefighter problem, a fire breaks out at some node of a given graph. At each time step, b nodes can be protected by a firefighter and then the fire spreads to all unprotected neighbors of the nodes on fire. The process ends when the fire can no longer spread. We extend the Firefighter problem to a probabilistic setting, where the infection is stochastic. We devise a simple policy that only vaccinates neighbors of infected nodes and is optimal on regular trees and on general graphs for a sufficiently large budget. We derive methods for calculating upper and lower bounds of the expected number of infected individuals, as well as provide estimates on the budget needed for containment in expectation. We calculate these explicitly on trees, d-dimensional grids, and ErdH{o}s R{e}nyi graphs. Finally, we construct a state-dependent budget allocation strategy and demonstrate its superiority over constant budget allocation on real networks following a first order acquaintance vaccination policy.
We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum -length edge) cost. We achieve an O(log n / log log n) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, Mk{a}dry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the pr oblem in $mathbb{R}^d$, with $dge 3$, are $mathrm{NP}$-hardness and an $O(log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $mathbb{R}^d$ is APX-hard for any $dge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1le k leq d-2$ unless $mathrm{P}=mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(log n)$ by showing that TSP with lines does not admit a $(2-epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(loglog n)}$.
One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as the Christofides algorithm. Recently, some authors started calling it Christofides-Serdyukov algorithm, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukovs findings and a translation of his article from Russian into English.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا