We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the support graph of the solution of the Held-Karp linear programming relaxation has bounded orientable genus.
We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamiltonian cycle that minimizes its bottleneck (or maximum
-length edge) cost. We achieve an O(log n / log log n) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on a related result of Asadpour, Goemans, Mk{a}dry, Oveis Gharan, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi. We also explore the possibility of further improvement upon our main result through a comparison to the symmetric counterpart of the problem.
One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as the Christofides algorithm.
Recently, some authors started calling it Christofides-Serdyukov algorithm, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukovs findings and a translation of his article from Russian into English.
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the pr
oblem in $mathbb{R}^d$, with $dge 3$, are $mathrm{NP}$-hardness and an $O(log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $mathbb{R}^d$ is APX-hard for any $dge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1le k leq d-2$ unless $mathrm{P}=mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(log n)$ by showing that TSP with lines does not admit a $(2-epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(loglog n)}$.
A new characterisation of Hamiltonian graphs using f-cutset matrix is proposed. A new exact polynomial time algorithm for the travelling salesman problem (TSP) based on this new characterisation is developed. We then define so called ordered weighted
adjacency list for given weighted complete graph and proceed to the main result of the paper, namely, the exact algorithm based on utilisation of ordered weighted adjacency list and the simple properties that any path or circuit must satisfy. This algorithm performs checking of sub-lists, containing (p-1) entries (edge pairs) for paths and p entries (edge pairs) for circuits, chosen from ordered adjacency list in a well defined sequence to determine exactly the shortest Hamiltonian path and shortest Hamiltonian circuit in a weighted complete graph of p vertices. The procedure has intrinsic advantage of landing on the desired solution in quickest possible time and even in worst case in polynomial time. A new characterisation of shortest Hamiltonian tour for a weighted complete graph satisfying triangle inequality (i.e. for tours passing through every city on a realistic map of cities where cities can be taken as points on a Euclidean plane) is also proposed. Finally, we propose a classical algorithm for unstructured search and also three new quantum algorithms for unstructured search which exponentially speed up the searching ability in the unstructured database and discuss its effect on the NP-Complete problems.
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing t
ime. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself.