ﻻ يوجد ملخص باللغة العربية
The Turan number of a graph $H$, denoted by $text{ex}(n, H)$, is the maximum number of edges in an $n$-vertex graph that does not have $H$ as a subgraph. Let $TP_k$ be the triangular pyramid of $k$-layers. In this paper, we determine that $text{ex}(n,TP_3)= frac{1}{4}n^2+n+o(n)$ and pose a conjecture for $text{ex}(n,TP_4)$.
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
Let $F$ be a graph. The planar Turan number of $F$, denoted by $text{ex}_{mathcal{P}}(n,F)$, is the maximum number of edges in an $n$-vertex planar graph containing no copy of $F$ as a subgraph. Let $Theta_k$ denote the family of Theta graphs on $kge
Let ${rm ex}_{mathcal{P}}(n,T,H)$ denote the maximum number of copies of $T$ in an $n$-vertex planar graph which does not contain $H$ as a subgraph. When $T=K_2$, ${rm ex}_{mathcal{P}}(n,T,H)$ is the well studied function, the planar Turan number of
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
A hypergraph is linear if any two of its edges intersect in at most one vertex. The Sail (or $3$-fan) $F^3$ is the $3$-uniform linear hypergraph consisting of $3$ edges $f_1, f_2, f_3$ pairwise intersecting in the same vertex $v$ and an additional ed