ﻻ يوجد ملخص باللغة العربية
A hypergraph is linear if any two of its edges intersect in at most one vertex. The Sail (or $3$-fan) $F^3$ is the $3$-uniform linear hypergraph consisting of $3$ edges $f_1, f_2, f_3$ pairwise intersecting in the same vertex $v$ and an additional edge $g$ intersecting all $f_i$ in a vertex different from $v$. The linear Turan number $ex_{lin}(n, F^3)$ is the maximum number of edges in a $3$-uniform linear hypergraph on $n$ vertices that does not contain a copy of $F^3$. F{u}redi and Gyarfas proved that if $n = 3k$, then $ex_{lin}(n, F^3) = k^2$ and the only extremal hypergraphs in this case are transversal designs. They also showed that if $n = 3k+2$, then $ex_{lin}(n, F^3) = k^2+k$, and the only extremal hypergraphs are truncated designs (which are obtained from a transversal design on $3k+3$ vertices with $3$ groups by removing one vertex and all the hyperedges containing it) along with three other small hypergraphs. However, the case when $n =3k+1$ was left open. In this paper, we solve this remaining case by proving that $ex_{lin}(n, F^3) = k^2+1$ if $n = 3k+1$, answering a question of F{u}redi and Gyarfas. We also characterize all the extremal hypergraphs. The difficulty of this case is due to the fact that these extremal examples are rather non-standard. In particular, they are not derived from transversal designs like in the other cases.
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
Let $F$ be a graph. The planar Turan number of $F$, denoted by $text{ex}_{mathcal{P}}(n,F)$, is the maximum number of edges in an $n$-vertex planar graph containing no copy of $F$ as a subgraph. Let $Theta_k$ denote the family of Theta graphs on $kge
Let ${rm ex}_{mathcal{P}}(n,T,H)$ denote the maximum number of copies of $T$ in an $n$-vertex planar graph which does not contain $H$ as a subgraph. When $T=K_2$, ${rm ex}_{mathcal{P}}(n,T,H)$ is the well studied function, the planar Turan number of
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
The Turan number of a graph H, ex(n,H), is the maximum number of edges in a graph on n vertices which does not have H as a subgraph. Let P_k be the path with k vertices, the square P^2_k of P_k is obtained by joining the pairs of vertices with distan