ﻻ يوجد ملخص باللغة العربية
We studied the performance of the Convolutional Neural Network (CNN) for energy regression in a finely 3D-segmented calorimeter simulated by GEANT4. A CNN trained solely on a pure sample of pions achieved substantial improvement in the energy resolution for both single pions and jets over the conventional approaches. It maintained good performance for electron and photon reconstruction. We also used the Graph Neural Network (GNN) with edge convolution to assess the importance of timing information in the shower development for improved energy reconstruction. In this paper, we present the comparison of several reconstruction techniques: a simple energy sum, a dual-readout analog, a CNN, and a GNN with timing information.
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy
We present a study which shows encouraging stability of the response linearity for a simulated high granularity calorimeter module reconstructed by a CNN model to miscalibration, bias, and noise effects. Our results also show an intuitive, quantifiab
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For th
The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a diff
We present the 3DGAN for the simulation of a future high granularity calorimeter output as three-dimensional images. We prove the efficacy of Generative Adversarial Networks (GANs) for generating scientific data while retaining a high level of accura