ﻻ يوجد ملخص باللغة العربية
The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a difficult process. The beam intensity of the Large Hadron Collider will be significantly increased during the Phase-II long shut down of 2024-2026. Signal processing techniques that are used to extract the energy of detected particles in the ATLAS detector will suffer a significant loss in performance under these conditions. This paper compares the presently used optimal filter technique to convolutional neural networks for energy reconstruction in the ATLAS liquid argon hadronic end cap calorimeter. In particular, it is shown that convolutional neural networks trained with an appropriately tuned and novel loss function are able to outperform the optimal filter technique.
We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localiz
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their
Cosmic muon spallation backgrounds are ubiquitous in low-background experiments. For liquid scintillator-based experiments searching for neutrinoless double-beta decay, the spallation product $^{10}$C is an important background in the region of inter
Precise calorimetric reconstruction of 5-50 MeV electrons in liquid argon time projection chambers (LArTPCs) will enable the study of astrophysical neutrinos in DUNE and could enhance the physics reach of oscillation analyses. Liquid argon scintillat
Liquid Argon Time Projection Chambers (LArTPCs) are ideal detectors for precision neutrino physics. These detectors, when located deep underground, can also be used for measurements of proton decay, and astrophysical neutrinos. The technology must be