ﻻ يوجد ملخص باللغة العربية
Optical nonlinear functions are crucial for various applications in integrated photonics, such as all-optical information processing, photonic neural networks and on-chip ultrafast light sources. Due to the weak nonlinearities in most integrated photonic platforms, realizing optical nonlinear functions typically requires large driving energies in the picojoules level or beyond, thus imposing a barrier for most applications. Here, we tackle this challenge and demonstrate an integrated nonlinear splitter device in lithium niobate nano-waveguides by simultaneous engineering of the dispersion and quasi-phase matching. We achieve non-resonant all-optical switching with ultra-low energies down to tens of femtojoules, a near instantaneous switching time of 18 fs, and a large extinction ratio of more than 5 dB. Our nonlinear splitter simultaneously realizes switch-on and -off operations and features a state-of-the-art switching energy-time product as low as $1.4 times10^{-27}$ J$cdot$s. We also show a path toward attojoule level all-optical switching by further optimizing the device geometry. Our results can enable on-chip ultrafast and energy-efficient all-optical information processing, computing systems, and light sources.
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate m
All-optical switching of 77 fs pulses centered at 1560 nm, driven by 270 fs, 1030 nm pulses in a dual-core optical fiber exhibiting high index contrast is presented. The fiber is made of a thermally matched pair of lead silicate and borosilicate glas
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limi
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stim
Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversio