ﻻ يوجد ملخص باللغة العربية
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate microstructures with feature sizes of several to hundreds of micrometers have been demonstrated, such as waveguides, photonic crystals, micro-cavities, and modulators, et al. In this paper, we presented subwavelength nanograting metasurfaces fabricated in a crystalline lithium niobate film, which hold the possibilities towards further shrinking the footprint of the photonic devices with new optical functionalities. Due to the collective lattice interactions between isolated ridge resonances, distinct transmission spectral resonances were observed, which could be tunable by varying the structural parameters. Furthermore, our metasurfaces are capable to show high efficiency transmission structural colors as a result of structural resonances and intrinsic high transparency of lithium niobate in visible spectral range. Our results would pave the way for the new types of ultracompact photonic devices based on lithium niobate.
Many applications of metasurfaces require an ability to dynamically change their properties in time domain. Electrical tuning techniques are of particular interest, since they pave a way to on-chip integration of metasurfaces with optoelectronic devi
Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important o
Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film l
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitiv
We demonstrate an ultralow loss monolithic integrated lithium niobate photonic platform consisting of dry-etched subwavelength waveguides. We show microring resonators with a quality factor of 10$^7$ and waveguides with propagation loss as low as 2.7 dB/m.