ﻻ يوجد ملخص باللغة العربية
This paper investigates adaptive streaming of one or multiple tiled 360 videos from a multi-antenna base station (BS) to one or multiple single-antenna users, respectively, in a multi-carrier wireless system. We aim to maximize the video quality while keeping rebuffering time small via encoding rate adaptation at each group of pictures (GOP) and transmission adaptation at each (transmission) slot. To capture the impact of field-of-view (FoV) prediction, we consider three cases of FoV viewing probability distributions, i.e., perfect, imperfect, and unknown FoV viewing probability distributions, and use the average total utility, worst average total utility, and worst total utility as the respective performance metrics. In the single-user scenario, we optimize the encoding rates of the tiles, encoding rates of the FoVs, and transmission beamforming vectors for all subcarriers to maximize the total utility in each case. In the multi-user scenario, we adopt rate splitting with successive decoding and optimize the encoding rates of the tiles, encoding rates of the FoVs, rates of the common and private messages, and transmission beamforming vectors for all subcarriers to maximize the total utility in each case. Then, we separate the challenging optimization problem into multiple tractable problems in each scenario. In the single-user scenario, we obtain a globally optimal solution of each problem using transformation techniques and the Karush-Kuhn-Tucker (KKT) conditions. In the multi-user scenario, we obtain a KKT point of each problem using the concave-convex procedure (CCCP). Finally, numerical results demonstrate that the proposed solutions achieve notable gains over existing schemes in all three cases. To the best of our knowledge, this is the first work revealing the impact of FoV prediction on the performance of adaptive streaming of tiled 360 videos.
Omnidirectional (or 360-degree) images and videos are emergent signals in many areas such as robotics and virtual/augmented reality. In particular, for virtual reality, they allow an immersive experience in which the user is provided with a 360-degre
The fundamental conflict between the enormous space of adaptive streaming videos and the limited capacity for subjective experiment casts significant challenges to objective Quality-of-Experience (QoE) prediction. Existing objective QoE models exhibi
In this paper, we study the server-side rate adaptation problem for streaming tile-based adaptive 360-degree videos to multiple users who are competing for transmission resources at the network bottleneck. Specifically, we develop a convolutional neu
With the merit of containing full panoramic content in one camera, Virtual Reality (VR) and 360-degree videos have attracted more and more attention in the field of industrial cloud manufacturing and training. Industrial Internet of Things (IoT), whe
In this paper, we propose a systematic solution to the problem of scheduling delay-sensitive media data for transmission over time-varying wireless channels. We first formulate the dynamic scheduling problem as a Markov decision process (MDP) that ex