ﻻ يوجد ملخص باللغة العربية
Photonic topology optimization is a technique used to find the electric permittivity distribution of a device that optimizes an electromagnetic figure-of-merit. Two common techniques are used: continuous density-based optimizations that optimize a grey-scale permittivity defined over a grid, and discrete level-set optimizations that optimize the shape of the material boundary of a device. More recently, continuous optimizations have been used to find an initial seed for a concluding level-set optimization since level-set techniques tend to benefit from a well-performing initial structure. However, continuous optimizations are not guaranteed to yield sufficient initial seeds for subsequent level-set optimizations, particularly for high-contrast structures, since they are not guaranteed to converge to solutions that resemble only two discrete materials. In this work, we present a method for constraining a continuous optimization such that it converges to a discrete solution. This is done by inserting a constrained sub-optimization at each iteration of an overall gradient-based optimization. This technique can be used purely on its own to optimize a device, or it can be used to provide a nearly discrete starting point for a level-set optimization.
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications,
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide wavegui
We experimentally demonstrate a broadband, fabrication tolerant, CMOS compatible compact silicon waveguide taper (34.2 um) in silicon-on-insulator wire waveguides. The taper works on multi-mode interference along the length of the taper. A single tap
Drawing inspiration from bilayer graphene, this paper introduces its photonic analog comprising two stacked graphene-like photonic crystals, that are coupled in the near-field through spoof surface plasmons. Beyond the twist degree of freedom that ca
Mode-division multiplexing (MDM) is becoming an enabling technique for large-capacity data communications via encoding the information on orthogonal guiding modes. However, the on-chip routing of a multimode waveguide occupies too large chip area due