ﻻ يوجد ملخص باللغة العربية
In the standard approach to Finsler geometry the metric is defined as a vertical Hessian and the Chern or Cartan connections appear as just two among many possible natural linear connections on the pullback tangent bundle. Here it is shown that the Hessian nature of the metric, the non-linear connection and the Chern or Cartan connections can be derived from a few compatibility axioms between metric and Finsler connection. This result provides a metric foundation to Finsler geometry and hence justifies the claim that ``Finsler geometry is Riemannian geometry without the quadratic restriction. The paper also contains a study of the compatibility condition to be placed between the metric and the non-linear connection.
The aim of the present paper is to provide a global presentation of the theory of special Finsler manifolds. We introduce and investigate globally (or intrinsically, free from local coordinates) many of the most important and most commonly used speci
A geodesic circle in Finsler geometry is a natural extension of that in a Euclidean space. In this paper, we apply Lie derivatives and the Cartan $Y$-connection to study geodesic circles and (infinitesimal) concircular transformations on a Finsler ma
A systematic development of the so-called Palatini formalism is carried out for pseudo-Finsler metrics $L$ of any signature. Substituting in the classical Einstein-Hilbert-Palatini functional the scalar curvature by the Finslerian Ricci scalar constr
We consider the natural generalization of the parabolic Monge-Amp`ere equation to HKT geometry. We prove that in the compact case the equation has always a short-time solution and when the hypercomplex manifold is locally flat and admits a hyperkahle
I show that Matsumoto conjectured inequality between relative length and Finsler length is false. The incorrectness of the claim is easily inferred from the geometry of the indicatrix.