ﻻ يوجد ملخص باللغة العربية
A geodesic circle in Finsler geometry is a natural extension of that in a Euclidean space. In this paper, we apply Lie derivatives and the Cartan $Y$-connection to study geodesic circles and (infinitesimal) concircular transformations on a Finsler manifold. We characterize a concircular vector field with some PDEs on the tangent bundle, and then we obtain respective necessary and sufficient conditions for a concircular vector field to be conformal and a conformal vector field to be concircular. We also show conditions for two conformally related Finsler metrics to be concircular, and obtain some invariant curvature properties under conformal and concircular transformations.
In the standard approach to Finsler geometry the metric is defined as a vertical Hessian and the Chern or Cartan connections appear as just two among many possible natural linear connections on the pullback tangent bundle. Here it is shown that the H
A systematic development of the so-called Palatini formalism is carried out for pseudo-Finsler metrics $L$ of any signature. Substituting in the classical Einstein-Hilbert-Palatini functional the scalar curvature by the Finslerian Ricci scalar constr
In this paper we introduce the concept of singular Finsler foliation, which generalizes the concepts of Finsler actions, Finsler submersions and (regular) Finsler foliations. We show that if $mathcal{F}$ is a singular Finsler foliation on a Randers m
I show that Matsumoto conjectured inequality between relative length and Finsler length is false. The incorrectness of the claim is easily inferred from the geometry of the indicatrix.
The physics of classical particles in a Lorentz-breaking spacetime has numerous features resembling the properties of Finsler geometry. In particular, the Lagrange function plays a role similar to that of a Finsler structure function. A summary is pr