ﻻ يوجد ملخص باللغة العربية
In this paper, we study the general orthogonal Radon transform $R_{p,q}^k$ first studied by R.S Strichartz in cite{Stri}. An sharp existence condition of $R_{p,q}^k f$ on $L^p$-spaces will be given. Then we devote to the relation formulas connecting Strichartz transform $R_{p,q}^k$ and Semyanistyi integrals. We prove the corresponding Fuglede type formulas, through which a number of explicit inversion formulas for $R_{p,q}^k f$ will be given. Different from the inclusion Radon transform and Gonzalez type orthogonal transform, Strichartz transform is more complicated. Our conclusions generalize the corresponding results of the two particular cases above.
In cluster physics a single particle potential to determine the microscopic part of the total energy of a collective configuration is necessary to calculate the shell- and pairing effects. In this paper we investigate the properties of the Riesz frac
The Riesz transform is a natural multi-dimensional extension of the Hilbert transform, and it has been the object of study for many years due to its nice mathematical properties. More recently, the Riesz transform and its variants have been used to c
In this paper we investigate Lp-boundedness properties for the higher order Riesz transforms associated with Laguerre operators. Also we prove that the k-th Riesz transform is a principal value singular integral operator (modulus a constant times of
In this article, we prove a Strichartz type inequality %associated with Schrodinger equation for a system of orthonormal functions associated with the special Hermite operator $mathcal{L}=-Delta+frac{1}{4}|z|^{2}-i sum_{1}^{n}left(x_{j} frac{partial}
The Strichartz inequality for the system of orthonormal functions for the Hermite operator $H=-Delta+|x|^2$ on $mathbb{R}^n$ has been proved in cite{lee}, using the classical Strichartz estimates for the free Schrodinger propagator for orthonormal sy