ﻻ يوجد ملخص باللغة العربية
We investigate steady-state thermal transport and photon statistics in a nonequilibrium hybrid quantum system, in which a qubit is longitudinally and quadratically coupled to an optical resonator. Our calculations are conducted with the method of the quantum dressed master equation combined with full counting statistics. The effect of negative differential thermal conductance is unravelled at finite temperature bias, which stems from the suppression of cyclic heat transitions and large mismatch of two squeezed photon modes at weak and strong qubit-resonator hybridizations, respectively. The giant thermal rectification is also exhibited at large temperature bias. It is found that the intrinsically asymmetric structure of the hybrid system and negative differential thermal conductance show the cooperative contribution. Noise power and skewness, as typical current fluctuations, exhibit global maximum with strong hybridization at small and large temperature bias limits, respectively. Moreover, the effect of photon quadrature squeezing is discovered in the strong hybridization and low-temperature regime, which shows asymmetric response to two bath temperatures. These results would provide some insight to thermal functional design and photon manipulation in qubit-resonator hybrid quantum systems.
Quantum thermal transport and two-photon statistics serve as two representative nonequilibrium features in circuit quantum electrodynamics systems. Here, we investigate quantum heat flow and two-photon correlation function at steady-state in a compos
We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly
Thermal rectification and heat amplification are investigated in a nonequilibrium V-type three-level system with quantum interference. By applying the Redfield master equation combined with full counting statistics, we analyze the steady state heat t
We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the s
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement phot