ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal rectification and heat amplification in a nonequilibrium V-type three-level system

66   0   0.0 ( 0 )
 نشر من قبل Chen Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal rectification and heat amplification are investigated in a nonequilibrium V-type three-level system with quantum interference. By applying the Redfield master equation combined with full counting statistics, we analyze the steady state heat transport. The noise-induced interference is found to be able to rectify the heat current, which paves a new way to design quantum thermal rectifier. Within the three-reservoir setup, the heat amplification is clearly identified far-from equilibrium, which is in absence of the negative differential thermal conductance.



قيم البحث

اقرأ أيضاً

59 - Chen Wang , Dazhi Xu 2019
We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polaron transformed Redfield equation combined with full counting statistics. The steady state heat currents are obtained via this unified appr oach over a wide region of system-bath coupling, and can be analytically reduced to the Redfield and nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits, respectively. A giant heat amplification phenomenon emerges in the strong system-bath coupling limit, where transitions mediated by the middle thermal bath is found to be crucial to unravel the underlying mechanism. Moreover, the heat amplification is also exhibited with moderate coupling strength, which can be properly explained within the polaron framework.
88 - Ya-Ju Song , Lei Qiao , 2019
The single-photon scattering in a rectangular waveguide by a V-type three-level emitter is studied for large range of input-photon energy beyond the single-mode region. By using Lippmann-Schwinger formalism, the necessary and sufficient conditions of complete transmission and complete reflection are derived analytically. In the single-mode region, the complete transmission caused by electromagnetically induced transparency (EIT) and the complete reflection due to Fano resonance can both be achieved by adjusting the emitters parameters. But in the multi-mode region, except that the input-state is prepared in a coherent superposition state, the perfect reflection is absent, and the photon inevitably enters other propagation modes due to the indirectly interaction between waveguide modes mediated by the emitter. Other remarkable features in the photon transport induced by the finite cross section includes the blueshift of the reflection resonance and the cutoff-frequency effect.
We investigate steady-state thermal transport and photon statistics in a nonequilibrium hybrid quantum system, in which a qubit is longitudinally and quadratically coupled to an optical resonator. Our calculations are conducted with the method of the quantum dressed master equation combined with full counting statistics. The effect of negative differential thermal conductance is unravelled at finite temperature bias, which stems from the suppression of cyclic heat transitions and large mismatch of two squeezed photon modes at weak and strong qubit-resonator hybridizations, respectively. The giant thermal rectification is also exhibited at large temperature bias. It is found that the intrinsically asymmetric structure of the hybrid system and negative differential thermal conductance show the cooperative contribution. Noise power and skewness, as typical current fluctuations, exhibit global maximum with strong hybridization at small and large temperature bias limits, respectively. Moreover, the effect of photon quadrature squeezing is discovered in the strong hybridization and low-temperature regime, which shows asymmetric response to two bath temperatures. These results would provide some insight to thermal functional design and photon manipulation in qubit-resonator hybrid quantum systems.
Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients. Here, we present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric heat currents can be ind uced in a linear system only if it is dynamically driven. The rectification can be further enhanced, even achieving maximal performance, by detuning the oscillators of the driven network. Finally, we demonstrate the feasibility of such driven harmonic network to work as a thermal transistor, quantifying its efficiency through the dynamical amplification factor.
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial $Lambda$ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of $0.66 pm 0.06$ with a reset time of $sim 400$~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا