ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Investment with Stopping in Finite Horizon

213   0   0.0 ( 0 )
 نشر من قبل Xun Li
 تاريخ النشر 2014
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate dynamic optimization problems featuring both stochastic control and optimal stopping in a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic optimal control and stopping problems in the existing literature, to study a managers decision. We formulate our model to a free boundary problem of a fully nonlinear equation. Furthermore, by means of a dual transformation for the above problem, we convert the above problem to a new free boundary problem of a linear equation. Finally, we apply the theoretical results to challenging, yet practically relevant and important, risk-sensitive problems in wealth management to obtain the properties of the optimal strategy and the right time to achieve a certain level over a finite time investment horizon.



قيم البحث

اقرأ أيضاً

152 - Chonghu Guan , Xun Li , Zuoquan Xu 2015
In this paper, we investigate an interesting and important stopping problem mixed with stochastic controls and a textit{nonsmooth} utility over a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic optimal control and stopping problems in the existing literature, to figure out a managers decision. We formulate our model to a free boundary problem of a fully textit{nonlinear} equation. By means of a dual transformation, however, we can convert the above problem to a new free boundary problem of a textit{linear} equation. Finally, using the corresponding inverse dual transformation, we apply the theoretical results established for the new free boundary problem to obtain the properties of the optimal strategy and the optimal stopping time to achieve a certain level for the original problem over a finite time investment horizon.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit e horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs , we derive simple formal asymptotics for the optimal policy and welfare. These reveal the roles of the investors preferences as well as the market and cost dynamics, and also lead to a fully dynamic model for the implied trading volume. In frictionless models that can be solved in closed form, explicit formulas for the leading-order corrections due to small transaction costs are obtained.
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-d ependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
223 - Zuo Quan Xu , Fahuai Yi 2014
A continuous-time consumption-investment model with constraint is considered for a small investor whose decisions are the consumption rate and the allocation of wealth to a risk-free and a risky asset with logarithmic Brownian motion fluctuations. Th e consumption rate is subject to an upper bound constraint which linearly depends on the investors wealth and bankruptcy is prohibited. The investors objective is to maximize total expected discounted utility of consumption over an infinite trading horizon. It is shown that the value function is (second order) smooth everywhere but a unique possibility of (known) exception point and the optimal consumption-investment strategy is provided in a closed feedback form of wealth, which in contrast to the existing work does not involve the value function. According to this model, an investor should take the same optimal investment strategy as in Mertons model regardless his financial situation. By contrast, the optimal consumption strategy does depend on the investors financial situation: he should use a similar consumption strategy as in Mertons model when he is in a bad situation, and consume as much as possible when he is in a good situation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا