ﻻ يوجد ملخص باللغة العربية
In this work, we study a scenario where a publisher seeks to maximize its total revenue across two sales channels: guaranteed contracts that promise to deliver a certain number of impressions to the advertisers, and spot demands through an Ad Exchange. On the one hand, if a guaranteed contract is not fully delivered, it incurs a penalty for the publisher. On the other hand, the publisher might be able to sell an impression at a high price in the Ad Exchange. How does a publisher maximize its total revenue as a sum of the revenue from the Ad Exchange and the loss from the under-delivery penalty? We study this problem parameterized by emph{supply factor $f$}: a notion we introduce that, intuitively, captures the number of times a publisher can satisfy all its guaranteed contracts given its inventory supply. In this work we present a fast simple deterministic algorithm with the optimal competitive ratio. The algorithm and the optimal competitive ratio are a function of the supply factor, penalty, and the distribution of the bids in the Ad Exchange. Beyond the yield optimization problem, classic online allocation problems such as online bipartite matching of [Karp-Vazirani-Vazirani 90] and its vertex-weighted variant of [Aggarwal et al. 11] can be studied in the presence of the additional supply guaranteed by the supply factor. We show that a supply factor of $f$ improves the approximation factors from $1-1/e$ to $f-fe^{-1/f}$. Our approximation factor is tight and approaches $1$ as $f to infty$.
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
Computational advertising has been studied to design efficient marketing strategies that maximize the number of acquired customers. In an increased competitive market, however, a market leader (a leader) requires the acquisition of new customers as w
In this paper we introduce novel algorithmic strategies for effciently playing two-player games in which the players have different or identical player roles. In the case of identical roles, the players compete for the same objective (that of winning
We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known di
The probabilistic serial (PS) rule is one of the most prominent randomized rules for the assignment problem. It is well-known for its superior fairness and welfare properties. However, PS is not immune to manipulative behaviour by the agents. We exam