ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual Squeeze-and-Excitation Network for Fast Image Deraining

116   0   0.0 ( 0 )
 نشر من قبل Jun Fu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Image deraining is an important image processing task as rain streaks not only severely degrade the visual quality of images but also significantly affect the performance of high-level vision tasks. Traditional methods progressively remove rain streaks via different recurrent neural networks. However, these methods fail to yield plausible rain-free images in an efficient manner. In this paper, we propose a residual squeeze-and-excitation network called RSEN for fast image deraining as well as superior deraining performance compared with state-of-the-art approaches. Specifically, RSEN adopts a lightweight encoder-decoder architecture to conduct rain removal in one stage. Besides, both encoder and decoder adopt a novel residual squeeze-and-excitation block as the core of feature extraction, which contains a residual block for producing hierarchical features, followed by a squeeze-and-excitation block for channel-wisely enhancing the resulted hierarchical features. Experimental results demonstrate that our method can not only considerably reduce the computational complexity but also significantly improve the deraining performance compared with state-of-the-art methods.



قيم البحث

اقرأ أيضاً

162 - Xiang Chen , Yufeng Huang , Lei Xu 2021
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment. To address these issues, we present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation. For better extracting the features, a novel Multi-scale Hourglass Extraction Block (MHEB) is proposed to get local and global features across different scales through down- and up-sample process. Besides, a Hierarchical Attentive Distillation Block (HADB) then employs the dual attention feature responses to adaptively recalibrate the hierarchical features and eliminate the redundant ones. Further, we introduce a Residual Projected Feature Fusion (RPFF) strategy to progressively discriminate feature learning and aggregate different features instead of directly concatenating or adding. Extensive experiments on both synthetic and real rainy datasets demonstrate the effectiveness of the designed MH2F-Net by comparing with recent state-of-the-art deraining algorithms. Our source code will be available on the GitHub: https://github.com/cxtalk/MH2F-Net.
489 - Hong Wang , Qi Xie , Qian Zhao 2021
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a nov el deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in emph{url{https://github.com/hongwang01/DRCDNet}}.
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons truction performance at the expense of considerably increasing the computational cost. This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation. In order to make an efficient use of the residual features, these are hierarchically aggregated into feature banks for posterior usage at the network output. In parallel, a lightweight hierarchical attention mechanism extracts the most relevant features from the network into attention banks for improving the final output and preventing the information loss through the successive operations inside the network. Therefore, the processing is split into two independent paths of computation that can be simultaneously carried out, resulting in a highly efficient and effective model for reconstructing fine details on high-resolution images from their low-resolution counterparts. Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
Single image rain streaks removal is extremely important since rainy images adversely affect many computer vision systems. Deep learning based methods have found great success in image deraining tasks. In this paper, we propose a novel residual-guide feature fusion network, called ResGuideNet, for single image deraining that progressively predicts highquality reconstruction. Specifically, we propose a cascaded network and adopt residuals generated from shallower blocks to guide deeper blocks. By using this strategy, we can obtain a coarse to fine estimation of negative residual as the blocks go deeper. The outputs of different blocks are merged into the final reconstruction. We adopt recursive convolution to build each block and apply supervision to all intermediate results, which enable our model to achieve promising performance on synthetic and real-world data while using fewer parameters than previous required. ResGuideNet is detachable to meet different rainy conditions. For images with light rain streaks and limited computational resource at test time, we can obtain a decent performance even with several building blocks. Experiments validate that ResGuideNet can benefit other low- and high-level vision tasks.
This paper proposes an end-to-end Efficient Re-parameterizationResidual Attention Network(ERRA-Net) to directly restore the nonhomogeneous hazy image. The contribution of this paper mainly has the following three aspects: 1) A novel Multi-branch Atte ntion (MA) block. The spatial attention mechanism better reconstructs high-frequency features, and the channel attention mechanism treats the features of different channels differently. Multi-branch structure dramatically improves the representation ability of the model and can be changed into a single path structure after re-parameterization to speed up the process of inference. Local Residual Connection allows the low-frequency information in the nonhomogeneous area to pass through the block without processing so that the block can focus on detailed features. 2) A lightweight network structure. We use cascaded MA blocks to extract high-frequency features step by step, and the Multi-layer attention fusion tail combines the shallow and deep features of the model to get the residual of the clean image finally. 3)We propose two novel loss functions to help reconstruct the hazy image ColorAttenuation loss and Laplace Pyramid loss. ERRA-Net has an impressive speed, processing 1200x1600 HD quality images with an average runtime of 166.11 fps. Extensive evaluations demonstrate that ERSANet performs favorably against the SOTA approaches on the real-world hazy images.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا