ﻻ يوجد ملخص باللغة العربية
Discovery of topologically protected surface states, believed to be immune to weak disorder and thermal effects, opened up a new avenue to reveal exotic fundamental science and advanced technology. While time-reversal symmetry plays the key role in most such materials, the bulk crystalline symmetries such as mirror symmetry preserve the topological properties of topological crystalline insulators (TCIs). It is apparent that any structural change may alter the topological properties of TCIs. To investigate this relatively unexplored landscape, we study the temperature evolution of the Dirac fermion states in an archetypical mirror-symmetry protected TCI, SnTe employing high-resolution angle-resolved photoemission spectroscopy and density functional theory studies. Experimental results reveal a perplexing scenario; the bulk bands observed at 22 K move nearer to the Fermi level at 60 K and again shift back to higher binding energies at 120 K. The slope of the surface Dirac bands at 22 K becomes smaller at 60 K and changes back to a larger value at 120 K. Our results from the first-principles calculations suggest that these anomalies can be attributed to the evolution of the hybridization physics with complex structural changes induced by temperature. In addition, we discover drastically reduced intensity of the Dirac states at the Fermi level at high temperatures may be due to complex evolution of anharmonicity, strain, etc. These results address robustness of the topologically protected surface states due to thermal effects and emphasize importance of covalency and anharmonicity in the topological properties of such emerging quantum materials.
A new class of materials, Topological Crystalline Insulators (TCIs) have been shown to possess exotic surface state properties that are protected by mirror symmetry. These surface features can be enhanced if the surface-area-to-volume ratio of the ma
The surface orientation dependence on the hydrogen evolution reaction (HER) performance of topological crystalline insulator (TCI) SnTe thin films is studied. Their intrinsic activities are determined by linear sweep voltammetry and cyclic voltammetr
Topological insulators materialize a topological quantum state of matter where unusual gapless metallic state protected by time-reversal symmetry appears at the edge or surface. Their discovery stimulated the search for new topological states protect
We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on cr
Recently, the topological classification of electronic states has been extended to a new class of matter known as topological crystalline insulators. Similar to topological insulators, topological crystalline insulators also have spin-momentum locked