ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental realization of a topological crystalline insulator in SnTe

189   0   0.0 ( 0 )
 نشر من قبل Seigo Souma
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological insulators materialize a topological quantum state of matter where unusual gapless metallic state protected by time-reversal symmetry appears at the edge or surface. Their discovery stimulated the search for new topological states protected by other symmetries, and a recent theory predicted the existence of topological crystalline insulators (TCIs) in which the metallic surface states are protected by mirror symmetry of the crystal. However, its experimental verification has not yet been reported. Here we show the first and definitive experimental evidence for the TCI phase in tin telluride (SnTe) which was recently predicted to be a TCI. Our angle-resolved photoemission spectroscopy shows clear signature of a metallic Dirac-cone surface band with its Dirac point slightly away from the edge of the surface Brillouin zone in SnTe. On the other hand, such a gapless surface state is absent in a cousin material lead telluride (PbTe), in line with the theoretical prediction. Our result establishes the presence of a TCI phase, and opens new avenues for exotic topological phenomena.



قيم البحث

اقرأ أيضاً

Recently, the topological classification of electronic states has been extended to a new class of matter known as topological crystalline insulators. Similar to topological insulators, topological crystalline insulators also have spin-momentum locked surface states; but they only exist on specific crystal planes that are protected by crystal reflection symmetry. Here, we report an ultra-low temperature scanning tunneling microscopy and spectroscopy study on topological crystalline insulator SnTe nanoplates grown by molecular beam epitaxy. We observed quasiparticle interference patterns on the SnTe (001) surface that can be interpreted in terms of electron scattering from the four Fermi pockets of the topological crystalline insulator surface states in the first surface Brillouin zone. A quantitative analysis of the energy dispersion of the quasiparticle interference intensity shows two high energy features related to the crossing point beyond the Lifshitz transition when the two neighboring low energy surface bands near the point merge. A comparison between the experimental and computed quasiparticle interference patterns reveals possible spin texture of the surface states.
161 - C. M. Polley , V. Jovic , T.-Y. Su 2015
The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn$_{1-x}$In$_{x}$Te), and for low indium contents ($x=0.04$) it is known that the topological surface states are preserved. Here we presen t the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to $xapprox0.4$), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist.
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topolo gical crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and thus to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak antilocalization and the weak links of the SQUID fully-gapped proximity induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2$pi$ periodicity, possibly dominated by the bulk conductivity.
We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on cr ystals of Sn0.6In0.4Te, which is shown to be a bulk superconductor with Tc(onset) at ~4.70(5) K and Tc(zero) at ~3.50(5) K. The upper and lower critical fields are estimated to be {mu}0Hc2(0) = 1.42(3) T and {mu}0Hc1(0) = 0.90(3) mT respectively, while {kappa} = 56.4(8) indicates this material is a strongly type II superconductor.
Very recently, increasing attention has been focused on non-Abelian topological charges, e.g. the quaternion group Q8. Different from Abelian topological band insulators, these systems involve multiple tangled bulk bandgaps and support non-trivial ed ge states that manifest the non-Abelian topological features. Furthermore, a system with even or odd number of bands will exhibit significant difference in non-Abelian topological classifications. Up to now, there is scant research investigating the even-band non-Abelian topological insulators. Here, we both theoretically explored and experimentally realized a four-band PT (inversion and time-reversal) symmetric system, where two new classes of topological charges as well as edge states are comprehensively studied. We illustrate their difference from four-dimensional rotation senses on the stereographically projected Clifford tori. We show the evolution of bulk topology by extending the 1D Hamiltonian onto a 2D plane and provide the accompanying edge state distributions following an analytical method. Our work presents an exhaustive study of four-band non-Abelian topological insulators and paves the way to other even band systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا