ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an reconfigurable intelligent surface (RIS) enhanced spectrum sensing system, in which the primary transmitter is equipped with single antenna, the secondary transmitter is equipped with multiple antennas, and the RIS is employed to improve the detection performance. Without loss of generality, we adopt the maximum eigenvalue detection approach, and propose a corresponding analytical framework based on large dimensional random matrix theory, to evaluate the detection probability in the asymptotic regime. Besides, the phase shift matrix of the RIS is designed with only the statistical channel state information (CSI), which is shown to be quite effective when the RIS-related channels are of Rician fading or line-of-sight (LoS). With the designed phase shift matrix, the asymptotic distributions of the equivalent channel gains are derived. Then, we provide the theoretical predictions about the number of reflecting elements (REs) required to achieve a detection probability close to 1. Finally, we present the Monte-Carlo simulation results to evaluate the accuracy of the proposed asymptotic analytical framework for the detection probability and the validity of the theoretical predictions about the number of REs required to achieve a detection probability close to 1. Moreover, the simulation results show that the proposed RIS-enhanced spectrum sensing system can substantially improve the detection performance.
Due to hardware limitations, the phase shifts of the reflecting elements of reconfigurable intelligent surfaces (RISs) need to be quantized into discrete values. This letter aims to unveil the minimum required number of phase quantization levels $L$
The novel concept of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RISs) is investigated, where the incident wireless signal is divided into transmitted and reflected signals passing into both sides of the spa
Spectrum sensing is a fundamental operation in cognitive radio environment. It gives information about spectrum availability by scanning the bands. Usually a fixed amount of time is given to scan individual bands. Most of the times, historical inform
The sparsity and compressibility of finite-dimensional signals are of great interest in fields such as compressed sensing. The notion of compressibility is also extended to infinite sequences of i.i.d. or ergodic random variables based on the observe
A bracketing metric entropy bound for the class of Laplace transforms of probability measures on [0,infty) is obtained through its connection with the small deviation probability of a smooth Gaussian process. Our results for the particular smooth Gaussian process seem to be of independent interest.