ﻻ يوجد ملخص باللغة العربية
Inverse problems defined on the sphere arise in many fields, and are generally high-dimensional and computationally very complex. As a result, sampling the posterior of spherical inverse problems is a challenging task. In this work, we describe a framework that leverages a proximal Markov chain Monte Carlo algorithm to efficiently sample the high-dimensional space of spherical inverse problems with a sparsity-promoting wavelet prior. We detail the modifications needed for the algorithm to be applied to spherical problems, and give special consideration to the crucial forward modelling step which contains spherical harmonic transforms that are computationally expensive. By sampling the posterior, our framework allows for full and flexible uncertainty quantification, something which is not possible with other methods based on, for example, convex optimisation. We demonstrate our framework in practice on a common problem in global seismic tomography. We find that our approach is potentially useful for a wide range of applications at moderate resolutions.
The Fisher-Bingham distribution ($mathrm{FB}_8$) is an eight-parameter family of probability density functions (PDF) on $S^2$ that, under certain conditions, reduce to spherical analogues of bivariate normal PDFs. Due to difficulties in computing its
We derive the second-order sampling properties of certain autocovariance and autocorrelation estimators for sequences of independent and identically distributed samples. Specifically, the estimators we consider are the classic lag windowed correlogra
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under
Deep neural networks have been applied successfully to a wide variety of inverse problems arising in computational imaging. These networks are typically trained using a forward model that describes the measurement process to be inverted, which is oft
We propose a novel method for computing $p$-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as $l