ﻻ يوجد ملخص باللغة العربية
We propose a novel method for computing $p$-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as $log^2{1/p}$, which compares favorably to the $1/p$ scaling for Monte Carlo (MC) simulations. For significances greater than about $4sigma$ in both a toy problem and a simplified resonance search, we show that NS requires orders of magnitude fewer simulations than ordinary MC estimates. This is particularly relevant for high-energy physics, which adopts a $5sigma$ gold standard for discovery. We conclude with remarks on new connections between Bayesian and frequentist computation and possibilities for tuning NS implementations for still better performance in this setting.
The current and upcoming generation of Very Large Volume Neutrino Telescopes---collecting unprecedented quantities of neutrino events---can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass or
We review the methods to combine several measurements, in the form of parameter values or $p$-values.
Sampling errors in nested sampling parameter estimation differ from those in Bayesian evidence calculation, but have been little studied in the literature. This paper provides the first explanation of the two main sources of sampling errors in nested
It was recently emphasised by Riley (2019); Schittenhelm & Wacker (2020) that that in the presence of plateaus in the likelihood function nested sampling (NS) produces faulty estimates of the evidence and posterior densities. After informally explain
This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power o