ﻻ يوجد ملخص باللغة العربية
With the development of condensed-matter physics and nanotechnology, attention has turned to the fields near and on surfaces that result from interactions between electric dipole radiation and mesoscale structures. It is hoped that studying these fields will further our understanding of optical phenomena in nano-optics, quantum mechanics, electromagnetics and sensing using solid-state photon emitters. Here, we describe a method for implementing dynamic electric and magnetic dipoles in the frequency domain into a non-singular field-only surface method. We show that the effect of dipoles can conveniently be described as a relatively simple term in the integral equations, which fully represents how they drive the fields and interactions. Also, due to the non-singularity, our method can calculate the electric and magnetic fields on the surfaces of objects in both near and far fields with the same accuracy, which makes it an ideal tool to investigate nano-optical phenomena. The derivation of the framework is given and tested against a Mie theory alike formula. Some interesting examples are shown involving the interaction of dipoles with different types of mesoscale structures including parabolic nano-antenna and gold probes.
A robust and efficient field-only nonsingular surface integral method to solve Maxwells equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector Helmholtz equation and
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. Thi
A robust field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric f
In a recent paper, Klaseboer et al. (IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) developed a surface integral formulation of electromagnetics that does not require working with integral equations that have singular kernels.
In computing electric conductivity based on the Kubo formula, the vertex corrections describe such effects as anisotropic scattering and quantum interference and are important to quantum transport properties. These vertex corrections are obtained by