ﻻ يوجد ملخص باللغة العربية
A robust field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric field are obtained directly from surface integral equation solutions of three scalar Helmholtz equations for the field components. The divergence-free condition is enforced via a boundary condition on the normal component of the field and its normal derivative. Field values and their normal derivatives at the surface of the PEC are obtained directly from surface integral equations that do not contain divergent kernels. Consequently, high-order elements with fewer degrees of freedom can be used to represent surface features to a higher precision than the traditional planar elements. This theoretical framework is illustrated with numerical examples that provide further physical insight into the role of the surface curvature in scattering problems.
A robust and efficient field-only nonsingular surface integral method to solve Maxwells equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector Helmholtz equation and
In a recent paper, Klaseboer et al. (IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) developed a surface integral formulation of electromagnetics that does not require working with integral equations that have singular kernels.
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. Thi
With the development of condensed-matter physics and nanotechnology, attention has turned to the fields near and on surfaces that result from interactions between electric dipole radiation and mesoscale structures. It is hoped that studying these fie
To what extent can particulate random media be characterised using direct wave backscattering from a single receiver/source? Here, in a two dimensional setting, we show using a machine learning approach that both the particle radius and concentration