ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic non-Abelian gravitating solitons in the Einstein-Yang-Mills-Higgs theory and transitions between them

173   0   0.0 ( 0 )
 نشر من قبل Seung Hun Oh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two analytic examples of globally regular non-Abelian gravitating solitons in the Einstein-Yang-Mills-Higgs theory in (3+1)-dimensions are presented. In both cases, the space-time geometries are of the Nariai type and the Yang-Mills field is completely regular and of meron type (namely, proportional to a pure gauge). However, while in the first family (type I) $X_{0} = 1/2$ (as in all the known examples of merons available so far) and the Higgs field is trivial, in the second family (type II) $X_{0}$ is not 1/2 and the Higgs field is non-trivial. We compare the entropies of type I and type II families determining when type II solitons are favored over type I solitons: the VEV of the Higgs field plays a crucial role in determining the phases of the system. The Klein-Gordon equation for test scalar fields coupled to the non-Abelian fields of the gravitating solitons can be written as the sum of a two-dimensional DAlembert operator plus a Hamiltonian which has been proposed in the literature to describe the four-dimensional Quantum Hall Effect (QHE): the difference between type I and type II solutions manifest itself in a difference between the degeneracies of the corresponding energy levels.



قيم البحث

اقرأ أيضاً

We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca llias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
411 - J. Bjoraker 2000
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total chan ge of transverse momentum of a charge is reviewed. Gauge fixing leads to a determination of a gauge transformation at infinity. An example of Yang-Mills memory then is obtained by reinterpreting known results on interactions of a quark and a large high energy nucleus in the theory of Color Glass Condensate. The memory signal is again a kick in transverse momentum, but it is only obtained in quantum theory after fixing the gauge, after summing over an ensemble of classical processes.
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom black hole in which, however, the coefficient of the $1/r^2$ term is not an integration constant. Even if the stress-energy tensor of the Yang-Mills field is spherically symmetric, the field strength of the Yang-Mills field itself is not. A remarkable consequence of this fact, which allows to distinguish the present solution from essentially Abelian configurations, is the Jackiw, Rebbi, Hasenfratz, t Hooft mechanism according to which excitations of bosonic fields moving in the background of a gauge field with this characteristic behave as Fermionic degrees of freedom.
154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا