ﻻ يوجد ملخص باللغة العربية
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
Using simple symmetry arguments we classify the ungauged $D=4$, $mathcal{N}=2$ supergravity theories, coupled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the product of $mathcal{N}=2$ and $mathcal{N}
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first cons
The aim of this talk is to give a brief introduction to the problem of confinement in QCD and to N=2 globally supersymmetric Yang-Mills gauge theories (SYM). While avoiding technicalities as much as possible I will try to emphasize the physical ideas
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 1
We consider the pure supersymmetric Yang--Mills theories placed on a small 3-dimensional spatial torus with higher orthogonal and exceptional gauge groups. The problem of constructing the quantum vacuum states is reduced to a pure mathematical proble