ﻻ يوجد ملخص باللغة العربية
Anti-piracy is fundamentally a procedure that relies on collecting data from the open anonymous population, so how to incentivize credible reporting is a question at the center of the problem. Industrial alliances and companies are running anti-piracy incentive campaigns, but their effectiveness is publicly questioned due to the lack of transparency. We believe that full transparency of a campaign is necessary to truly incentivize people. It means that every role, e.g., content owner, licensee of the content, or every person in the open population, can understand the mechanism and be assured about its execution without trusting any single role. We see this as a distributed system problem. In this paper, we present Argus, a fully transparent incentive system for anti-piracy campaigns. The groundwork of Argus is to formulate the objectives for fully transparent incentive mechanisms, which securely and comprehensively consolidate the different interests of all roles. These objectives form the core of the Argus design, highlighted by our innovations about a Sybil-proof incentive function, a commit-and-reveal scheme, and an oblivious transfer scheme. In the implementation, we overcome a set of unavoidable obstacles to ensure security despite full transparency. Moreover, we effectively optimize several cryptographic operations so that the cost for a piracy reporting is reduced to an equivalent cost of sending about 14 ETH-transfer transactions to run on the public Ethereum network, which would otherwise correspond to thousands of transactions. With the security and practicality of Argus, we hope real-world anti-piracy campaigns will be truly effective by shifting to a fully transparent incentive mechanism.
Fully Homomorphic Encryption (FHE) allows computing on encrypted data, enabling secure offloading of computation to untrusted serves. Though it provides ideal security, FHE is expensive when executed in software, 4 to 5 orders of magnitude slower tha
Internet of Things (IoT) devices have become ubiquitous and are spread across many application domains including the industry, transportation, healthcare, and households. However, the proliferation of the IoT devices has raised the concerns about the
As companies continue to invest heavily in larger, more accurate and more robust deep learning models, they are exploring approaches to monetize their models while protecting their intellectual property. Model licensing is promising, but requires a r
Distributed data processing platforms such as MapReduce and Pregel have substantially simplified the design and deployment of certain classes of distributed graph analytics algorithms. However, these platforms do not represent a good match for distri
The iterative conditional branchings appear in various sensitive algorithms, like the modular exponentiation in the RSA cryptosystem or the scalar multiplication in ellipticcurve cryptography. In this paper, we abstract away the desirable security pr