ترغب بنشر مسار تعليمي؟ اضغط هنا

HADES-IoT: A Practical Host-Based Anomaly Detection System for IoT Devices (Extended Version)

280   0   0.0 ( 0 )
 نشر من قبل Ivan Homoliak
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Internet of Things (IoT) devices have become ubiquitous and are spread across many application domains including the industry, transportation, healthcare, and households. However, the proliferation of the IoT devices has raised the concerns about their security, especially when observing that many manufacturers focus only on the core functionality of their products due to short time to market and low-cost pressures, while neglecting security aspects. Moreover, it does not exist any established or standardized method for measuring and ensuring the security of IoT devices. Consequently, vulnerabilities are left untreated, allowing attackers to exploit IoT devices for various purposes, such as compromising privacy, recruiting devices into a botnet, or misusing devices to perform cryptocurrency mining. In this paper, we present a practical Host-based Anomaly DEtection System for IoT (HADES-IoT) that represents the last line of defense. HADES-IoT has proactive detection capabilities, provides tamper-proof resistance, and it can be deployed on a wide range of Linux-based IoT devices. The main advantage of HADES-IoT is its low performance overhead, which makes it suitable for the IoT domain, where state-of-the-art approaches cannot be applied due to their high-performance demands. We deployed HADES-IoT on seven IoT devices to evaluate its effectiveness and performance overhead. Our experiments show that HADES-IoT achieved 100% effectiveness in the detection of current IoT malware such as VPNFilter and IoTReaper; while on average, requiring only 5.5% of available memory and causing only a low CPU load.



قيم البحث

اقرأ أيضاً

IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration. As a result, many networks already have vulnerable IoT devices that are easy to compromise. This has led to a new category of malware specifically targeting IoT devices. However, existing intrusion detection techniques are not effective in detecting compromised IoT devices given the massive scale of the problem in terms of the number of different types of devices and manufacturers involved. In this paper, we present DIoT, an autonomous self-learning distributed system for detecting compromised IoT devices effectively. In contrast to prior work, DIoT uses a novel self-learning approach to classify devices into device types and build normal communication profiles for each of these that can subsequently be used to detect anomalous deviations in communication patterns. DIoT utilizes a federated learning approach for aggregating behavior profiles efficiently. To the best of our knowledge, it is the first system to employ a federated learning approach to anomaly-detection-based intrusion detection. Consequently, DIoT can cope with emerging new and unknown attacks. We systematically and extensively evaluated more than 30 off-the-shelf IoT devices over a long term and show that DIoT is highly effective (95.6% detection rate) and fast (~257 ms) at detecting devices compromised by, for instance, the infamous Mirai malware. DIoT reported no false alarms when evaluated in a real-world smart home deployment setting.
This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware af fecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participants privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
Due to their rapid growth and deployment, the Internet of things (IoT) have become a central aspect of our daily lives. Unfortunately, IoT devices tend to have many vulnerabilities which can be exploited by an attacker. Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner. However, anomaly detection models must be trained for a long time in order to capture all benign behaviors. Furthermore, the anomaly detection model is vulnerable to adversarial attacks since, during the training phase, all observations are assumed to be benign. In this paper, we propose (1) a novel approach for anomaly detection and (2) a lightweight framework that utilizes the blockchain to ensemble an anomaly detection model in a distributed environment. Blockchain framework incrementally updates a trusted anomaly detection model via self-attestation and consensus among the IoT devices. We evaluate our method on a distributed IoT simulation platform, which consists of 48 Raspberry Pis. The simulation demonstrates how the approach can enhance the security of each device and the security of the network as a whole.
363 - Lan Luo , Yue Zhang , Cliff C. Zou 2020
Internet of Things (IoT) devices have been increasingly integrated into our daily life. However, such smart devices suffer a broad attack surface. Particularly, attacks targeting the device software at runtime are challenging to defend against if IoT devices use resource-constrained microcontrollers (MCUs). TrustZone-M, a TrustZone extension for MCUs, is an emerging security technique fortifying MCU based IoT devices. This paper presents the first security analysis of potential software security issues in TrustZone-M enabled MCUs. We explore the stack-based buffer overflow (BOF) attack for code injection, return-oriented programming (ROP) attack, heap-based BOF attack, format string attack, and attacks against Non-secure Callable (NSC) functions in the context of TrustZone-M. We validate these attacks using the TrustZone-M enabled SAM L11 MCU. Strategies to mitigate these software attacks are also discussed.
84 - Muhammad Usman 2020
The internet of things refers to the network of devices connected to the internet and can communicate with each other. The term things is to refer non-conventional devices that are usually not connected to the internet. The network of such devices or things is growing at an enormous rate. The security and privacy of the data flowing through these things is a major concern. The devices are low powered and the conventional encryption algorithms are not suitable to be employed on these devices. In this correspondence a survey of the contemporary lightweight encryption algorithms suitable for use in the IoT environment has been presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا