ﻻ يوجد ملخص باللغة العربية
We carry out a test of the radial acceleration relation (RAR) for a sample of 10 dynamically relaxed and cool-core galaxy clusters imaged by the Chandra X-ray telescope, which was studied in Giles et al. For this sample, we observe that the best-fit RAR shows a very tight residual scatter equal to 0.09 dex. We obtain an acceleration scale of $1.59 times 10^{-9} m/s^2$, which is about an order of magnitude higher than that obtained for galaxies. Furthermore, the best-fit RAR parameters differ from those estimated from some of the previously analyzed cluster samples, which indicates that the acceleration scale found from the RAR could be of an emergent nature, instead of a fundamental universal scale.
We carry out a test of the radial acceleration relation (RAR) for galaxy clusters from two different catalogs compiled in literature, as an independent cross-check of two recent analyses, which reached opposite conclusions. The datasets we considered
The dark matter halo surface density, given by the product of the dark matter core radius ($r_c$) and core density ($rho_c$) has been shown to be a constant for a wide range of isolated galaxy systems. Here, we carry out a test of this {em ansatz} us
We study the radial acceleration relation (RAR) between the total ($a_{rm tot}$) and baryonic ($a_{rm bary}$) centripetal acceleration profiles of central galaxies in the cold dark matter (CDM) paradigm. We analytically show that the RAR is intimatel
Galaxies covering several orders of magnitude in stellar mass and a variety of Hubble types have been shown to follow the Radial Acceleration Relation (RAR), a relationship between $g_{rm obs}$, the observed circular acceleration of the galaxy, and $
We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15$le$z$le$0.3 observed with $Chandra$. We investigate the luminosity-mass ($LM$) relation for the cluster sample, with the masses