ترغب بنشر مسار تعليمي؟ اضغط هنا

Yet another test of Radial Acceleration Relation for galaxy clusters

89   0   0.0 ( 0 )
 نشر من قبل Shantanu Desai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out a test of the radial acceleration relation (RAR) for galaxy clusters from two different catalogs compiled in literature, as an independent cross-check of two recent analyses, which reached opposite conclusions. The datasets we considered include a Chandra sample of 12 clusters and the X-COP sample of 12 clusters. For both the samples, we find that the residual scatter is small (0.11-0.14 dex), although the best-fit values for the Chandra sample have large error bars. Therefore, we argue that at least one of these cluster samples (X-COP) obeys the radial acceleration relation. However, since the best-fit parameters are discrepant with each other as well as the previous estimates, we argue that the RAR is not universal. For both the catalogs, the acceleration scale, which we obtain is about an order of magnitude larger than that obtained for galaxies, and is agreement with both the recent estimates.



قيم البحث

اقرأ أيضاً

299 - Gopika K , Shantanu Desai 2021
The dark matter halo surface density, given by the product of the dark matter core radius ($r_c$) and core density ($rho_c$) has been shown to be a constant for a wide range of isolated galaxy systems. Here, we carry out a test of this {em ansatz} us ing a sample of 17 relaxed galaxy groups observed using Chandra and XMM-Newton, as an extension of our previous analysis with galaxy clusters. We find that $rho_c propto r_c^{-1.35^{+0.16}_{-0.17}}$, with an intrinsic scatter of about 27.3%, which is about 1.5 times larger than that seen for galaxy clusters. Our results thereby indicate that the surface density is discrepant with respect to scale invariance by about 2$sigma$, and its value is about four times greater than that for galaxies. Therefore, the elevated values of the halo surface density for groups and clusters indicate that the surface density cannot be a universal constant for all dark matter dominated systems. Furthermore, we also implement a test of the radial acceleration relation for this group sample. We find that the residual scatter in the radial acceleration relation is about 0.32 dex and a factor of three larger than that obtained using galaxy clusters. The acceleration scale which we obtain is in-between that seen for galaxies and clusters.
We carry out a test of the radial acceleration relation (RAR) for a sample of 10 dynamically relaxed and cool-core galaxy clusters imaged by the Chandra X-ray telescope, which was studied in Giles et al. For this sample, we observe that the best-fit RAR shows a very tight residual scatter equal to 0.09 dex. We obtain an acceleration scale of $1.59 times 10^{-9} m/s^2$, which is about an order of magnitude higher than that obtained for galaxies. Furthermore, the best-fit RAR parameters differ from those estimated from some of the previously analyzed cluster samples, which indicates that the acceleration scale found from the RAR could be of an emergent nature, instead of a fundamental universal scale.
We investigate the origin of the colour-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies in the bright end of the CMR with respect to the trend denoted by less luminous galaxies could be explained by the influence of minor mergers
118 - Michele Cantiello 2013
The distance of NGC1316, the brightest galaxy in Fornax, is an interesting test for the cosmological distance scale. First, because Fornax is the 2nd largest cluster of galaxies at <~25 Mpc after Virgo and, in contrast to Virgo, has a small line-of-s ight depth; and second, because NGC1316 is the galaxy with the largest number of detected SNeIa, giving the opportunity to test the consistency of SNeIa distances internally and against other indicators. We measure SBF mags in NGC1316 from ground and space-based imaging data, providing a homogeneous set of measurements over a wide wavelength interval. The SBF, coupled with empirical and theoretical calibrations, are used to estimate the distance to the galaxy. We present the first B-band SBF measurements of NGC1316 and use them together with the optical and near-IR SBF data to analyze the properties of field stars. Our distance modulus m-M=31.59 +-0.05(stat) +-0.14(sys), when placed in a consistent Cepheid distance scale, agrees with the results from other indicators. However, our result is ~17% larger than the most recent estimate based on SNeIa. Possible explanations for this disagreement are the uncertainties on internal extinction, or calibration issues. Concerning the stellar population analysis, we confirm earlier results from other indicators: the field stars in NGC1316 are dominated by a solar metallicity, intermediate age component. A substantial mismatch exists between B-band SBF models and data, a behavior that can be accounted for by an enhanced percentage of hot horizontal branch stars. Our study of the SBF distance to NGC1316, and the comparison with distances from other indicators, raises some concern about the homogeneity between the calibrations of different indicators. If not properly placed in the same reference scale, significant differences can occur, with dramatic impact on the cosmological distance ladder.
An acceleration scale of order $10^{-10}mathrm{m/s^2}$ is implicit in the baryonic Tully-Fisher and baryonic Faber-Jackson relations, independently of any theoretical preference or bias. We show that the existence of this scale in the baryonic Faber- Jackson relation is most apparent when data from pressure supported systems of vastly different scales including globular clusters, elliptical galaxies, and galaxy clusters are analyzed together. This suggests the relevance of the acceleration scale $10^{-10}mathrm{m/s^2}$ to structure formation processes at many different length scales and could be pointing to a heretofore unknown property of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا