ﻻ يوجد ملخص باللغة العربية
Structured pruning is an effective compression technique to reduce the computation of neural networks, which is usually achieved by adding perturbations to reduce network parameters at the cost of slightly increasing training loss. A more reasonable approach is to find a sparse minimizer along the flat minimum valley found by optimizers, i.e. stochastic gradient descent, which keeps the training loss constant. To achieve this goal, we propose the structured directional pruning based on orthogonal projecting the perturbations onto the flat minimum valley. We also propose a fast solver sDprun and further prove that it achieves directional pruning asymptotically after sufficient training. Experiments using VGG-Net and ResNet on CIFAR-10 and CIFAR-100 datasets show that our method obtains the state-of-the-art pruned accuracy (i.e. 93.97% on VGG16, CIFAR-10 task) without retraining. Experiments using DNN, VGG-Net and WRN28X10 on MNIST, CIFAR-10 and CIFAR-100 datasets demonstrate our method performs structured directional pruning, reaching the same minimum valley as the optimizer.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr
Reducing the test time resource requirements of a neural network while preserving test accuracy is crucial for running inference on resource-constrained devices. To achieve this goal, we introduce a novel network reparameterization based on the Krone
In this paper, we propose a novel progressive parameter pruning method for Convolutional Neural Network acceleration, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Un
Deep Neural Networks (DNNs) are the key to the state-of-the-art machine vision, sensor fusion and audio/video signal processing. Unfortunately, their computation complexity and tight resource constraints on the Edge make them hard to leverage on mobi
Recent empirical works show that large deep neural networks are often highly redundant and one can find much smaller subnetworks without a significant drop of accuracy. However, most existing methods of network pruning are empirical and heuristic, le