ﻻ يوجد ملخص باللغة العربية
Reducing the test time resource requirements of a neural network while preserving test accuracy is crucial for running inference on resource-constrained devices. To achieve this goal, we introduce a novel network reparameterization based on the Kronecker-factored eigenbasis (KFE), and then apply Hessian-based structured pruning methods in this basis. As opposed to existing Hessian-based pruning algorithms which do pruning in parameter coordinates, our method works in the KFE where different weights are approximately independent, enabling accurate pruning and fast computation. We demonstrate empirically the effectiveness of the proposed method through extensive experiments. In particular, we highlight that the improvements are especially significant for more challenging datasets and networks. With negligible loss of accuracy, an iterative-pruning version gives a 10$times$ reduction in model size and a 8$times$ reduction in FLOPs on wide ResNet32.
Structured pruning is an effective compression technique to reduce the computation of neural networks, which is usually achieved by adding perturbations to reduce network parameters at the cost of slightly increasing training loss. A more reasonable
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr
In this paper, we propose a novel progressive parameter pruning method for Convolutional Neural Network acceleration, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Un
We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but
Deep Neural Networks (DNNs) are the key to the state-of-the-art machine vision, sensor fusion and audio/video signal processing. Unfortunately, their computation complexity and tight resource constraints on the Edge make them hard to leverage on mobi