ﻻ يوجد ملخص باللغة العربية
Transformer is the state of the art model for many language and visual tasks. In this paper, we give a deep analysis of its multi-head self-attention (MHSA) module and find that: 1) Each token is a random variable in high dimensional feature space. 2) After layer normalization, these variables are mapped to points on the hyper-sphere. 3) The update of these tokens is a Brownian motion. The Brownian motion has special properties, its second order item should not be ignored. So we present a new second-order optimizer(an iterative K-FAC algorithm) for the MHSA module. In some short words: All tokens are mapped to high dimension hyper-sphere. The Scaled Dot-Product Attention $softmax(frac{mathbf{Q}mathbf{K}^T}{sqrt{d}})$ is just the Markov transition matrix for the random walking on the sphere. And the deep learning process would learn proper kernel function to get proper positions of these tokens. The training process in the MHSA module corresponds to a Brownian motion worthy of further study.
The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to violate the positivity of the
We present a modified Brownian motion model for random matrices where the eigenvalues (or levels) of a random matrix evolve in time in such a way that they never cross each others path. Also, owing to the exact integrability of the level dynamics, we
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the v
A Brownian particle in an ideal quantum gas is considered. The mean square displacement (MSD) is derived. The Bose-Einstein or Fermi-Dirac distribution, other than the Maxwell-Boltzmann distribution, provides a different stochastic force compared wit
We investigate the classical Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation