ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lindblad Model of Quantum Brownian Motion

140   0   0.0 ( 0 )
 نشر من قبل Aniello Lampo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to violate the positivity of the density operator at very low temperatures. We study an extension of existing models, leading to an equation in the Lindblad form, which is free of this problem. We study the dynamics of the model, including the detailed properties of its stationary solution, for both constant and position-dependent coupling of the Brownian particle to the bath, focusing in particular on the correlations and the squeezing of the probability distribution induced by the environment



قيم البحث

اقرأ أيضاً

86 - Tian Qiu , H. T. Quan 2020
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the v on Neumann entropy of a particle undergoing quantum Brownian motion. In both the strong and the weak coupling regimes, we obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high-temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy of the system. Moreover, under the Markovian approximation, we obtain the expression of the quantum corrections to the total entropy production rate ${e_{rm p}}$ and the heat dissipation rate ${h_{rm d}}$. Our results bring important insights to the understanding of entropy in open quantum systems.
72 - Roumen Tsekov 2021
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluc howski equations, accounting for the effect of the quantum thermal bath oscillators. The model of Brownian emitters is theoretically studied and the relevant evolutionary equations for the probability density are derived. The Schrodinger equation is explained via collisions of the target point particles with the quantum force carriers, transmitting the fundamental interactions between the point particles. Thus, electrons and other point particles are no waves and the wavy chapter of quantum mechanics originated for the force carriers. A stochastic Lorentz-Langevin equation is proposed to describe the underlaying Brownian-like motion of the point particles in quantum mechanics. Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed, and the relevant Smoluchowski-Bohm equation is derived. A nonlinear master equation is proposed by proper quantization of the classical Klein-Kramers equation. Its equilibrium solution in the exact canonical Gibbs density operator, while the well-known Caldeira-Leggett equation is simply a linearization at high temperature. In the case of a free quantum Brownian particles, a new law for the spreading of the wave packet it discovered, which represents the quantum generalization of the classical Einstein law of Brownian motion. A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment. Its application results in dissipative Schrodinger equations, as well as in a new form of dissipative Liouville equation in classical mechanics.
159 - R. Tsekov 2017
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction the corresponding Smoluchowski equation is obtained. Introducing the Bohm quantum potential, this Smoluchowski equation is extended to describe the Brownian motion of a quantum particle in quantum environment.
279 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self -organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
We consider a toy model for emergence of chaos in a quantum many-body short-range-interacting system: two one-dimensional hard-core particles in a box, with a small mass defect as a perturbation over an integrable system, the latter represented by tw o equal mass particles. To that system, we apply a quantum generalization of Chirikovs criterion for the onset of chaos, i.e. the criterion of overlapping resonances. There, classical nonlinear resonances translate almost verbatim to the quantum language. Quantum mechanics intervenes at a later stage: the resonances occupying less than one Hamiltonian eigenstate are excluded from the chaos criterion. Resonances appear as contiguous patches of low purity unperturbed eigenstates, separated by the groups of undestroyed states---the quantum analogues of the classical KAM tori.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا