ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing modified gravitational wave propagation with strongly lensed coalescing binaries

92   0   0.0 ( 0 )
 نشر من قبل Michele Maggiore
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been recently shown that quadruply lensed gravitational-wave (GW) events due to coalescing binaries can be localized to one or just a few galaxies, even in the absence of an electromagnetic counterpart. We discuss how this can be used to extract information on modified GW propagation, which is a crucial signature of modifications of gravity at cosmological scales. We show that, using quadruply lensed systems, it is possible to constrain the parameter $Xi_0$ that characterizes modified GW propagation, without the need of imposing a prior on $H_0$. A LIGO/Virgo/Kagra network at target sensitivity might already get a significant measurement of $Xi_0$, while a third generation GW detector such as the Einstein Telescope could reach a very interesting accuracy.



قيم البحث

اقرأ أيضاً

Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als o predict deviations from general relativity in the propagation of GWs across cosmological distances, even in theories where the speed of gravity is equal to $c$. We find that, in generic modified gravity models, the effect of modified GW propagation dominates over that of $w_{rm DE}(z)$, making modified GW propagation a crucial observable for dark energy studies with standard sirens. We present a convenient parametrization of the effect in terms of two parameters $(Xi_0,n)$, analogue to the $(w_0,w_a)$ parametrization of the dark energy equation of state, and we give a limit from the LIGO/Virgo measurement of $H_0$ with the neutron star binary GW170817. We then perform a Markov Chain Monte Carlo analysis to estimate the sensitivity of the Einstein Telescope (ET) to the cosmological parameters, including $(Xi_0,n)$, both using only standard sirens, and combining them with other cosmological datasets. In particular, the Hubble parameter can be measured with an accuracy better than $1%$ already using only standard sirens while, when combining ET with current CMB+BAO+SNe data, $Xi_0$ can be measured to $0.8%$ . We discuss the predictions for modified GW propagation of a specific nonlocal modification of gravity, recently developed by our group, and we show that they are within the reach of ET. Modified GW propagation also affects the GW transfer function, and therefore the tensor contribution to the ISW effect.
Modified gravitational wave (GW) propagation is a generic phenomenon in modified gravity. It affects the reconstruction of the redshift of coalescing binaries from the luminosity distance measured by GW detectors, and therefore the reconstruction of the actual masses of the component compact stars from the observed (`detector-frame) masses. We show that, thanks to the narrowness of the mass distribution of binary neutron stars, this effect can provide a clear signature of modified gravity, particularly for the redshifts explored by third generation GW detectors such as Einstein Telescope and Cosmic Explorer.
112 - Nan Jiang , Kent Yagi 2021
Gravitational-wave sources can serve as standard sirens to probe cosmology by measuring their luminosity distance and redshift. Such standard sirens are also useful to probe theories beyond general relativity with a modified gravitational-wave propag ation. Many of previous studies on the latter assume multi-messenger observations so that the luminosity distance can be measured with gravitational waves while the redshift is obtained by identifying sources host galaxies from electromagnetic counterparts. Given that gravitational-wave events of binary neutron star coalescences with associated electromagnetic counterpart detections are expected to be rather rare, it is important to examine the possibility of using standard sirens with gravitational-wave observations alone to probe gravity. In this paper, we achieve this by extracting the redshift from the tidal measurement of binary neutron stars that was originally proposed within the context of gravitational-wave cosmology (another approach is to correlate dark sirens with galaxy catalogs that we do not consider here). We consider not only observations with ground-based detectors (e.g. Einstein Telescope) but also multi-band observations between ground-based and space-based (e.g. DECIGO) interferometers. We find that such multi-band observations with the tidal information can constrain a parametric non-Einsteinian deviation in the luminosity distance (due to the modified friction in the gravitational wave evolution) more stringently than the case with electromagnetic counterparts by a factor of a few. We also map the above-projected constraints on the parametric deviation to those on specific theories and phenomenological models beyond general relativity to put the former into context.
Gravitational-wave (GW) observations by a network of ground-based laser interferometric detectors allow us to probe the nature of GW polarizations. This would be an interesting test of general relativity (GR), since GR predicts only two polarization modes while there are theories of gravity that predict up to six polarization modes. The ability of GW observations to probe the nature of polarizations is limited by the available number of linearly independent detectors in the network. (To extract all polarization modes, there should be at least as many detectors as the polarization modes.) Strong gravitational lensing of GWs offers a possibility to significantly increase the effective number of detectors in the network. Due to strong lensing (e.g., by galaxies), multiple copies of the same signal can be observed with time delays of several minutes to weeks. Owing to the rotation of the earth, observation of the multiple copies of the same GW signal would allow the network to measure different combinations of the same polarizations. This effectively multiplies the number of detectors in the network. Focusing on strongly lensed signals from binary black hole mergers that produce two observable images, using Bayesian model selection and assuming simple polarization models, we show that our ability to distinguish between polarization models is significantly improved.
It is standard practice to study the lensing of gravitational waves (GW) using the geometric optics regime. However, in many astrophysical configurations this regime breaks down as the wavelength becomes comparable to the Schwarzschild radius of the lens. We revisit the lensing of GW including corrections beyond geometric optics. We propose a perturbative method for calculating these corrections simply solving first order decoupled differential equations. We study the behavior of a single ray and find that the polarization plane defined in geometric optics is smeared due to diffraction effects, which leads to the rise of apparent vector and scalar polarization modes. We analyze how these modes depend on the observer choice, and we study the impact of diffraction on the pseudo-stress energy momentum tensor of the gravitational field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا