ﻻ يوجد ملخص باللغة العربية
It is standard practice to study the lensing of gravitational waves (GW) using the geometric optics regime. However, in many astrophysical configurations this regime breaks down as the wavelength becomes comparable to the Schwarzschild radius of the lens. We revisit the lensing of GW including corrections beyond geometric optics. We propose a perturbative method for calculating these corrections simply solving first order decoupled differential equations. We study the behavior of a single ray and find that the polarization plane defined in geometric optics is smeared due to diffraction effects, which leads to the rise of apparent vector and scalar polarization modes. We analyze how these modes depend on the observer choice, and we study the impact of diffraction on the pseudo-stress energy momentum tensor of the gravitational field.
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als
We present the first detailed computations of wave optics effects in the gravitational lensing of binary systems. The field is conceptually rich, combining the caustic singularities produced in classical gravitational lensing with quantum (wave) inte
It has been recently shown that quadruply lensed gravitational-wave (GW) events due to coalescing binaries can be localized to one or just a few galaxies, even in the absence of an electromagnetic counterpart. We discuss how this can be used to extra
A passing gravitational wave causes a deflection in the apparent astrometric positions of distant stars. The effect of the speed of the gravitational wave on this astrometric shift is discussed. A stochastic background of gravitational waves would re
The direct detection of gravitational waves (GW) from merging binary black holes and neutron stars mark the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial